Ride Revolution™ HIT Series Training Module Reference List

HIT and pregnancy: https://sma.org.au/resources-advice/policies-and-guidelines/active-women-in-sport/

Fox rd, S. M., & Haskell, W. L. (1968). Physical activity and the prevention of coronary heart disease. Bulletin of the New York Academy of Medicine (1925), 44(8), 950–965.

Fox, S. M. III., Naughton, J. P., and Haskell, W. L. (1971). Physical activity and the prevention of coronary heart disease. Ann. Clin. Res. 3, 404–432

Nes, B. M., Janszky, I., Wisløff, U., Støylen, A., & Karlsen, T. (2013). Age-predicted maximal heart rate in healthy subjects: The HUNT Fitness Study. Scandinavian Journal of Medicine & Science in Sports, 23(6), 697–704. https://doi.org/10.1111/j.1600-0838.2012.01445.x

Nikolaidis, P. T., Rosemann, T., & Knechtle, B. (2018). Age-predicted maximal heart rate in recreational marathon runners: A cross-sectional study on Fox’s and Tanaka’s equations. Frontiers in Physiology, 9, 226–226. https://doi.org/10.3389/fphys.2018.00226

Shookster, Daniel; Lindsey, Bryndan; Martin, Joel; Cortes, Nelson. Accuracy Of Age-predicted Maximal Heart Rate In The General Population: 243 Board #59 May 27 9:30 AM – 11:00 AM. Medicine & Science in Sports & Exercise: July 2020 – Volume 52 – Issue 7S – p 48-49
doi: 10.1249/01.mss.0000670520.59103.e9

Bacon, A. P., Carter, R. E., Ogle, E. A., & Joyner, M. J. (2013). VO.sub.2max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. PloS One, 8(9), e73182–. https://doi.org/10.1371/journal.pone.0073182

Rosenblat, M. A., Perrotta, A. S., & Thomas, S. G. (2020). Effect of High-Intensity Interval Training Versus Sprint Interval Training on Time-Trial Performance: A Systematic Review and Meta-analysis. Sports Medicine (Auckland), 50(6), 1145–1161. https://doi.org/10.1007/s40279-020-01264-1

Waletzko, S. & Terbizan, D. (2019). Sprint Interval Training or High-intensity Interval Training to Improve VO2max In Sedentary Individuals? A Meta-analysis.. Medicine & Science in Sports & Exercise, 51 (6S), 862-862. doi: 10.1249/01.mss.0000563076.31630.be.

Buchheit, M., & Laursen, P. B. (2013). High-Intensity Interval Training, Solutions to the Programming Puzzle: Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications. Sports Medicine (Auckland), 43(10), 927–954. https://doi.org/10.1007/s40279-013-0066-5

Alansare, A., Alford, K., Lee, S., Church, T., & Jung, H. C. (2018). The effects of high-intensity interval training vs. Moderate-intensity continuous training on heart rate variability in physically inactive adults. International Journal of Environmental Research and Public Health, 15(7), 1508–. https://doi.org/10.3390/ijerph15071508

Almenning, I., Rieber-Mohn, A., Lundgren, K. M., Løvvik, T. S., Garnæs, K. K., & Moholdt, T. (2015). Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: A pilot study. PloS One, 10(9), e0138793–e0138793. https://doi.org/10.1371/journal.pone.0138793

Dupuit, M., Maillard, F., Pereira, B., Marquezi, M. L., Lancha, A. H., & Boisseau, N. (2020). Effect of high intensity interval training on body composition in women before and after menopause: a meta‐analysis. Experimental Physiology, 105(9), 1470–1490. https://doi.org/10.1113/EP088654

Jelleyman, C., Yates, T., O’Donovan, G., Gray, L. J., King, J. A., Khunti, K., & Davies, M. J. (2015). effects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐analysis. Obesity Reviews, 16(11), 942–961. https://doi.org/10.1111/obr.12317

Keating, S. E., Johnson, N. A., Mielke, G. I., & Coombes, J. S. (2017). A systematic review and meta‐analysis of interval training versus moderate‐intensity continuous training on body adiposity. Obesity Reviews, 18(8), 943–964. https://doi.org/10.1111/obr.12536

Marzuca-Nassr, G. N., Artigas-Arias, M., Olea, M. A., SanMartín-Calísto, Y., Huard, N., Durán-Vejar, F., Beltrán-Fuentes, F., Muñoz-Fernández, A., Alegría-Molina, A., Sapunar, J., & Salazar, L. A. (2020). High-intensity interval training on body composition, functional capacity and biochemical markers in healthy young versus older people. Experimental Gerontology, 141, 111096–111096. https://doi.org/10.1016/j.exger.2020.111096

Milanović. (2015). Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Medicine., 45(10), 1469–1481. https://doi.org/info:doi/

Molmen-Hansen, H. E., Stolen, T., Tjonna, A. E., Aamot, I. L., Ekeberg, I. S., Tyldum, G. A., Wisloff, U., Ingul, C. B., & Stoylen, A. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. European Journal of Preventive Cardiology, 19(2), 151–160. https://doi.org/10.1177/1741826711400512

Musa, D. I. , Adeniran, S. A. , Dikko, A. U. & Sayers, S. P. (2009). The Effect of a High-Intensity Interval Training Program on High-Density Lipoprotein Cholesterol in Young Men. Journal of Strength and Conditioning Research, 23 (2), 587-592. doi: 10.1519/JSC.0b013e318198fd28.

Okur, I. , Aksoy, C. , Yaman, F. & Sen, T. (2022). Which high-intensity interval training program is more effective in patients with coronary artery disease?. International Journal of Rehabilitation Research, 45 (2), 168-175. doi: 10.1097/MRR.0000000000000524

Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Medicine (Auckland), 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8

Sylta, K., Tknnessen, E., Sandbakk, K., Hammarström, D., Danielsen, J., Skovereng, K., Rknnestad, B. R., & Seiler, S. (2017). Effects of high-intensity training on physiological and hormonal adaptions in well-trained cyclists. Medicine and Science in Sports and Exercise, 49(6), 1137–1146. https://doi.org/10.1249/MSS.0000000000001214

Uken, B. , Lee, M. , Wright, G. & Feito, Y. (2021). High-Intensity Interval Training for Hypertension. ACSM’s Health & Fitness Journal, 25 (5), 28-34. doi: 10.1249/FIT.0000000000000706

Vaccari, F., Passaro, A., D’Amuri, A., Sanz, J. M., Di Vece, F., Capatti, E., Magnesa, B., Comelli, M., Mavelli, I., Grassi, B., Fiori, F., Bravo, G., Avancini, A., Parpinel, M., & Lazzer, S. (2020). Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. European Journal of Applied Physiology, 120(8), 1787–1803. https://doi.org/10.1007/s00421-020-04409-2

Emanuele, U., & Denoth, J. (2012). Power–cadence relationship in endurance cycling. European Journal of Applied Physiology, 112(1), 365–375. https://doi.org/10.1007/s00421-011-1987-z

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The Science of Cycling: Factors Affecting Performance – Part 2. Sports Medicine, 35(4), 313–337. https://doi.org/10.2165/00007256-200535040-00003

Foss, O., & Hallen, J. (2005). Cadence and performance in elite cyclists. European Journal of Applied Physiology, 93(4), 453–462. https://doi.org/10.1007/s00421-004-1226-y

Foss. (2004). The most economical cadence increases with increasing workload. European Journal of Applied Physiology., 92(4/5), 443–451. https://doi.org/info:doi/

Kordi, M., Folland, J., Goodall, S., Barratt, P., & Howatson, G. (2019). Isovelocity vs. Isoinertial Sprint Cycling Tests for Power- and Torque-cadence Relationships. International Journal of Sports Medicine, 40(14), 897–902. https://doi.org/10.1055/a-0989-2387

Kordi, M., Folland, J. P., Goodall, S., Menzies, C., Patel, T. S., Evans, M., Thomas, K., & Howatson, G. (2020). Cycling‐specific isometric resistance training improves peak power output in elite sprint cyclists. Scandinavian Journal of Medicine & Science in Sports, 30(9), 1594–1604. https://doi.org/10.1111/sms.13742

Merkes, P. F. J., Menaspà, P., & Abbiss, C. R. (2020). Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions. Scandinavian Journal of Medicine & Science in Sports, 30(1), 64–73. https://doi.org/10.1111/sms.13555

Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2016). The effect of low- vs high-cadence interval training on the freely chosen cadence and performance in endurance-trained cyclists. Applied Physiology, Nutrition, and Metabolism, 41(6), 666–673. https://doi.org/10.1139/apnm-2015-0562